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We apply the computational methodology of phase retrieval to the problem of folding heteropolymers. The
ground state fold of the polymer is defined by the intersection of two sets in the configuration space of its
constituent monomers: a geometrical chain constraint and a threshold constraint on the contact energy. A
dynamical system is then defined in terms of the projections to these constraint sets, such that its fixed points
solve the set intersection problem. We present results for two off-lattice hydrophobic-polar models: one with
only rotameric degrees of freedom, and one proposed by Stillinger et al. �Phys. Rev. E 48, 1469 �1993�� with
flexible bond angles. Our phase retrieval inspired algorithm is competitive with more established algorithms
and even finds lower-energy folds for one of the longer polymer chains.

DOI: 10.1103/PhysRevE.73.026702 PACS number�s�: 05.10.�a, 87.15.Aa, 87.15.Cc

I. INTRODUCTION

A favorite metaphor in the field of nonlinear optimization,
and computational protein folding in particular, is the energy
landscape. Energy landscapes have been compared to fun-
nels �1� and golf courses �2�, and are generally held respon-
sible for all the behavior observed in nature, as well as the
challenges faced by simulators. Kinetics simulations are, by
their very nature, tied to the topography of the energy land-
scape and cannot avoid scaling its barriers and languishing in
its manifold minima. The outlook for native fold discovery,
however, is more optimistic. As we show below, for this
problem there are options that escape the confines of the
energy landscape and yield significant computational divi-
dends.

Most native fold search strategies are conservative in at
least two respects. First, the search is carried out in the same
space accessed by the physical degrees of freedom of the
protein. Second, the search in this space is carried out
quasilocally, in the sense that every conformation examined
is derived from a previously considered conformation by a
local modification. There are alternatives to these general
guidelines that have proven effective in other fields. For in-
spiration we turn to the classic problem of phase retrieval.

The naive search space in phase retrieval is superficially
equivalent to the space of rotamer configurations, each un-
known phase angle � corresponding to a dihedral angle on
the protein backbone. An important application of phase re-
trieval is the reconstruction of the electron density in a crys-
tal, given its Fourier amplitudes Fq:

��r� = �
q

Fq cos�q · r + �q� . �1�

The task of the algorithm is to find values for the phases �q
such that the resulting density �1� satisfies certain general
characteristics �e.g., positivity, atomicity� or constraints. To
illustrate the idea, we consider a very simple situation where
the given amplitudes Fq are derived from a density known to

take only two values, say �= ±1. To implement the binary
valued density constraint we could try minimizing a penalty
function of the form

V = �
r

���r�2 − 1�2, �2�

where the positions r fall on a grid determined by the range
over which the Fourier vectors q are sampled. This expres-
sion for V, an explicit function of the phase variables �q, is a
possible energy landscape for the phase retrieval problem.
The correct phases are identified by discovering a point on
the landscape where the energy realizes the minimum value
V=0.

Practical phase retrieval algorithms do not minimize an
objective function as sketched above �3–5�. The most suc-
cessful algorithms do not navigate the barriers and false
minima of an energy landscape. Typically, the search per-
formed by these algorithms is carried out in a much larger
space �than the space of “rotamers”� and the steps executed
are global in character. The example above serves to illus-
trate the key elements of the search dynamics, called projec-
tions. There are two projections, both of which act on a den-
sity that has been freed of all constraints. In particular, one
no longer insists that � has the given Fourier amplitudes, that
is, the form �1� parametrized by phase angles. Instead, one
uses the device of a projection PA, which takes an arbitrary
input density � and returns a minimal modification of �
where the given Fourier amplitudes have been restored. This
can be computed efficiently, by first transforming � to Fou-
rier space, making the necessary modification there, and then
transforming back. The term “projection” is derived from the
minimality condition, and in the case of PA corresponds �in
Fourier space� to mapping each complex Fourier coefficient
to the nearest point on a circle whose radius is given by the
corresponding amplitude Fq. The binary constraint on the
density values is implemented by another projection PB,
where minimality of the change calls for all positive values
to be replaced by 1, negative values by −1. Each of the two
projections accomplishes something global, in effect solving
half of the problem to completion. The spectrum of modern
phase retrieval algorithms arises from both the variety of the*Electronic address: ve10@cornell.edu
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kinds of projections used, as well as variations in how they
are combined �6�.

Figure 1 shows successive iterates of a particular combi-
nation of projections, called the difference map �6�, on the
phase retrieval problem for a binary valued density. The dy-
namics is deterministic and the discovery of the solution cor-
responds to the arrival at a fixed point of the map. Although
the number of iterations required by the algorithm depends
on the initial density, this number is always much less than
the size of an exhaustive search.

We show below that the projection technique can be ap-
plied to the protein native fold search problem, and that for
simple off-lattice heteropolymer models the results are en-
couraging. After a brief review of the difference map scheme
for combining projections, we examine in detail the two pro-
jections that apply to the native fold search. We present re-
sults for two hydrophobic-polar �HP� models, one with only
dihedral degrees of freedom �rotamer model�, and a model
proposed by Stillinger et al. �7� with variable bond angles
�flexible chain model�. For the longer chains the projection
based algorithm was able to find lower energies than pub-
lished results �8,9� obtained by methods that explore the en-
ergy landscape.

II. THEORY AND MODELS

A. Difference map algorithm

The search space is in general a high-dimensional Euclid-
ean space E. Polymer conformations, for example, are em-
bedded by associating three Cartesian coordinates of E with
the position of each monomer in the chain. The goal of the
algorithm is to discover one element x�A�B, where A and
B are subsets of E, usually having the character of con-
straints. In polymer applications, for example, set A might
represent all monomer configurations that satisfy the chain
constraints �bond lengths, etc.�. The constraint sets A and B
are assumed to be simple enough that the two projections to

these sets, PA and PB, can be computed efficiently. For ex-
ample, to compute y= PA�x�, we need to find an element y
�A that minimizes the distance �y−x�. In difference map
applications one may relax the condition that y�A realizes
the true minimum of �y−x�, although this is usually easy to
achieve when y is near enough to x that the constraint can be
linearized. In general, the performance of the algorithm is
improved by the distance minimizing quality of the projec-
tions.

When the projections are combined in alternating fashion,
x� PA(PB�x�), problems arise when there is a local mini-
mum in the separation of the constraint sets. As shown in
Fig. 2, this map can then have a fixed point x*= PA(PB�x*�)
that lies in A but not B. The difference map is a more elabo-
rate combination of projections given by �6�

x � D�x� = x + ���x� , �3�

��x� = PA„fB�x�… − PB„fA�x�… , �4�

where

fA�x� = PA�x� − �−1�PA�x� − x� , �5�

fB�x� = PB�x� + �−1�PB�x� − x� , �6�

and ��0 is a dimensionless parameter. At a fixed point
x*=D�x*�, we have ��x*�=0 and

PA„fB�x*�… = PB„fA�x*�… = xsol. �7�

This shows that xsol�A�B, since xsol is in the range of
both projections. The more straightforward definition ��x�
= PA�x�− PB�x�, which leads to the same conclusion, is not
useful because the fixed points x* of D are then unstable. The
maps fA and fB are tuned to maximize the attraction of the
difference map’s fixed points �10�. When confronted with a
near intersection of sets A and B, iterates of the difference
map move at a uniform rate along the axis of nearest sepa-
ration, as shown in Fig. 2. The step size in the latter situation
decreases in proportion to the distance between A and B, and
the flow degenerates into a space of fixed points when A and
B intersect.

Studies of hard optimization problems, such as phase re-
trieval, point to the following sequence of events in the dif-
ference map solution process. Starting from an arbitrary ini-
tial point x0�E, the iterates very quickly converge on a
much smaller subset, a quasiattractor Q. The dynamics on Q

FIG. 1. The difference map solution of a phase retrieval problem
resembles a deterministic cellular automaton. The cells in each hori-
zontal row represent one iterate of the one-dimensional, recon-
structed density. Starting from any initial density �top�, iteration of
the map eventually arrives at the fixed point solution �bottom�.

FIG. 2. �Color online� Comparison of alternating projections
�left� and difference map iterations �center� in the case of two con-
straint sets, a point �red� and a line �blue�, that do not intersect. The
alternating map PA(PB�x�) stagnates on set A; iterates of D�x� move
uniformly along the axis of nearest separation between A and B.
When A and B intersect �right�, every point in the space locally
orthogonal to both constraints is a fixed point of D�x�.
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is chaotic, and Q would be a true �chaotic� attractor in an
ill-posed problem instance, when A�B is empty. Since the
two projections are in fact very insensitive to the existence of
a solution, it follows that the dynamics in a well-posed in-
stance is similar, only differing when the iterate arrives at the
attractive basin of a fixed point and the algorithm terminates.
A cartoon comparison of exhaustive rotamer search and dif-
ference map search is given in Fig. 3.

B. Heteropolymer models

We consider two off-lattice heteropolymer models, with
monomer-monomer interaction of the Lennard-Jones form:

ELJ = 4�
i=1

N−2

�
j=i+2

N � 1

rij
12 −

Cij

rij
6 � . �8�

N is the number of monomers, rij is the vector separation of
monomers i and j with magnitude 	rij	=rij, and Cij =Cji are
constants that depend on the hydrophobic �H� and polar �P�
character of the monomers. For the flexible chain model pro-
posed by Stillinger et al. �7�,

CHH = 1, CHP = −
1

2
, CPP =

1

2
. �9�

Another model we study, the rotamer model, has

CHH = 1, CHP = CPP =
1

2
. �10�

The main difference between the flexible chain and rotamer
models is the nature of the constraints on the polymer chain.
In the flexible chain model only the bond length is fixed,
rii+1=1; in the rotamer model the bond angles are fixed as
well: ri−1i ·rii+1=cos �. Since the latter constraint fixes the
distances rii+2, these terms are excluded from the sum in �8�
for the rotamer model. The flexible chain model adds a bond
angle energy favoring linear conformations:

Echain =
1

4 �
i=2

N−1

�1 − ri−1i · rii+1� . �11�

C. Constraint projections

Protein conformations are subject to two, typically an-
tagonistic, constraints. In order to function, proteins adopt a
compact shape with stability and functionality conferred by
the three dimensional packing of its constituent amino acid
residues. In order for the protein to be synthesized, however,
the arrangement of the residues must also correspond to a
possible conformation of a polypeptide chain. Either of these
constraints would be much easier to satisfy if the other could
be neglected, and there would then be a multitude of solu-
tions. The difficulty in finding the native fold, from this per-
spective, is finding a configuration of residues that satisfies
both constraints. We discuss later how this point of view
provides a basis for understanding the uniqueness of the na-
tive fold.

The application of the difference map algorithm to the
model proteins described above involves three things: speci-
fying the embedding, defining the constraint sets, and com-
puting projections to the constraint sets. We embed both
models in a Euclidean space E of dimension 3N in the stan-
dard way: three Cartesian coordinates for each monomer po-
sition. The constraint sets A and B correspond to the chain
constraints and packing constraints, respectively.

Set A in the flexible chain model is the set of all monomer
configurations in E with rii+1=1, while in the rotamer model
we impose the additional constraint ri−1i ·rii+1=cos � �for a
given ��. The projection to A, or PA, is computed with the
aid of a penalty function Vchain. For the rotamer model we
used

Vchain = �
i=1

N−1

�rii+1 − 1�2 + �
i=2

N−1

�ri−1i · rii+1 − cos ��2. �12�

The flexible chain model used only the first term in �12�. To
compute PA�x�, given some input monomer configuration x
�E, we use gradient descent minimization of Vchain, termi-
nated when the step size falls below a given threshold. The
algorithm records the success of the projection by testing
whether Vchain is within a small tolerance value of zero. In
the experiments reported below, the success rate for PA was
100%.

The packing constraint set B in the rotamer model is sim-
ply the set of monomer configurations x�E satisfying
ELJ�x��E0, where E0 specifies the energy depth of the
search. For the constraint satisfaction problem to have a fea-
sible point, or the difference map to have a fixed point, E0
must be greater than the ground state energy of the polymer.
We again compute the corresponding projection, PB, using
gradient descent, but now with the function ELJ. The termi-
nation criterion is also different, since we are only interested
in crossing the ELJ�x�=E0 contour, rather than finding a
local minimum. After crossing the target contour, we use
Newton iterations to converge on the contour, as this brings
us slightly closer to the input, while still satisfying the
constraint. In the event that the input x already satisfies
ELJ�x��E0, the same x is returned as the output of the pro-
jection. Crossing of the E0 contour is used as the criterion for
a successful computation of PB. Clearly the success rate de-
pends on E0. In our experiments the success rate for PB was

FIG. 3. �Color online� Cartoon of the spaces sampled by opti-
mization algorithms: rotamer space for the case of two dihedral
angles �left�, and the difference map quasiattractor �right�. The di-
mension of the quasiattractor is smaller than that of the correspond-
ing rotamer space, even though it is embedded in a higher-
dimensional Euclidean space. The large �red� point represents the
solution.
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essentially 100%, since the target energy E0 is always such
that finding a feasible point of ELJ�x��E0 is easy. This is
because the target energies of relevance, those that apply in
the dual constraint problem, are always significantly above
the minimum energy of the pure packing problem �no chain
constraint�. Because the inputs to projections generated by
the difference map scheme can fall within regions where ELJ
diverges sharply, we modified the Lennard-Jones potential to
have the form a−brij

2 for separations rij �0.9, with a and b
chosen to make ELJ and its first derivatives continuous. All
the folds discovered by the algorithm have rij �0.9 for all
monomer pairs i and j. A similar soft-atom modification of
the Lennard-Jones function was used by Levitt �11�.

Figure 4 shows the action of the chain constraint projec-
tion, PA, on a configuration of monomers in the rotamer
model with cos �=0.5. The H-P sequence is known only to
PA; in this example it is periodic with a three-element motif:
�HPP�8. The packing constraint PB is blind to the sequence
ordering of monomers.

The formulation of the packing constraint set, and the
computation of its projection, was somewhat different in the
flexible chain model. This example illustrates both the pit-
falls in the naive application of the difference map algorithm,
as well as its flexibility. The chain energy �11� would seem to
have its natural place in defining the chain constraint A.
However, this would entail having to specify another adjust-
able energy parameter in addition to the packing energy E0.
The other option, of combining Echain with ELJ �thereby
modifying set B�, would be a mistake because the former has
a very long-range character, in contrast with the latter, and
the projection would almost always be blind to the possibil-
ity of favorable monomer contacts. Our solution was to com-
bine a modified form of Echain with ELJ:

Echain� =
1

4 �
i=2

N−1

�1 − ri−1i · rii+1�w�ri−1i�w�rii+1� , �13�

where

w�r� = 
1, if r 	 1,

1 − �1/r2 − 1�2, if r � 1.
� �14�

A modification of this kind is valid, since any solution
x�A�B satisfies the chain constraint, and Echain� reduces to
Echain.

Gradient descent to a constraint set specified by the con-
tours of a function, is only distance minimizing when the
constraint function is linear. We considered the possibility,
when seeking a nearby point on a contour, say V�x�=V0, that
it may be advantageous to perform gradient descent on a
“guiding function,” say G�x�. The descent would still be ter-
minated at the contour of the original function; the role of the
guiding function is only to minimize the length of the path to
the contour. In the rotamer model we obtained good quality
projections without the use of guiding functions. In the flex-
ible chain model, however, we used the guiding function

G�x� = ELJ�CHP;x� . �15�

G�x� omits the chain bending energy Echain� and allows for a
modified value of the Lennard-Jones parameter CHP. The
negative value of CHP in the model has the effect that during
gradient descent the condensed monomers may fission into
separated H and P domains. This is avoided by giving CHP a
non-negative value in the guiding function.

III. RESULTS

A. Rotamer model

A useful record of the progress of the difference
map algorithm is the time series of difference magnitudes

t= ���xt��. In our folding application, 
t is the rms displace-
ment �in units of the chain’s bond length� of monomers in
two configurations: one satisfying the chain constraint, the
other satisfying the packing �energy� constraint. The algo-
rithm terminates when 
t=0, that is, when a valid polymer
geometry is found with energy below the chosen target value
E0 �a “feasible solution”�. Figure 5 shows a difference plot
with �=1.2 for the sequence �HPP�8 in the rotamer model
with geometry cos �=0.5 and target energy E0=−24. The
behavior of 
t in the folding problem is typical of behavior
observed in other applications �6�. The three stages of the
solution process are evident in �i� a fast initial decay �not
shown in Fig. 5� during convergence to the quasiattractor, �ii�
steady-state fluctuations as the quasiattractor is searched, and
�iii� a final �fast� decay to zero when the solution �a fixed
point� is discovered. As in phase retrieval, the distribution of
run times �total iterations� is exponential �5� and consistent
with the interpretation of a very fast relaxation of the prob-
ability distribution on the quasiattractor. For the parameters
given, the average number of iterations per solution was
Iav=7500.

The feasible solutions found by the difference map for
given target energies E0 were refined by steepest descent
minimization of the heteropolymer energy; the chain geom-
etry was maintained by adding the penalty function �12� with
a large multiplier. For each run of the algorithm we therefore
obtain one locally minimized fold with energy guaranteed to
be below E0. In the example above, about half of the outputs
had the same refined energy of −25.048 and structure �or
enantiomorph�. Since this is also the lowest energy obtained,
we have good reason to believe this is the ground state. The
structure, shown in Fig. 6, resembles a cut trefoil knot.

The most direct measure of the work performed by the
algorithm is the average number of iterations per solution Iav,
divided by the rate p0 with which the lowest-energy fold
�putative ground state� is obtained. This is a number that we
expect to grow exponentially with the length of the polymer,
and roughly corresponds to the number of conformations that
must be sampled before one can claim to have discovered the
ground state. For the example above, Iav/ p0�15 000. We
repeated the above experiment with longer sequences having
the same repeating motif. The size N=36 is about the limit of
where the ground state can be established with modest com-
puting resources �a single processor�. As argued below, it
may be possible to exceed this limit for well-designed se-
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quences. Our rotamer model experiments are summarized in
Table I.

B. Flexible chain model

Studies of this model by other investigators �8,9� have
been limited to Fibonacci sequences Fk, defined by

F0 = H, F1 = P, Fk+1 = Fk−1Fk. �16�

The tendency toward hydrophobic core formation is even
stronger for the Lennard-Jones parameters of the flexible
chain model. For the Fibonacci sequences, in particular, the
chain bending energy must be sacrificed in order to allow the
chain to weave between the hydrophobic core and polar en-
velope. To improve the packing projection we therefore used
the guiding function �15�, which omits the bending energy,
and CHP=0 for the short chains, CHP=0.1 for N=55. A sign
change of the difference map parameter �, which effectively
interchanges the two constraint sets, gave somewhat better
results in the flexible chain model.

Our results for Fibonacci chains up to N=55 are summa-
rized and compared with other algorithms in Table II. The
difference map corroborates the ground state candidates
found by the ELP �13� algorithm for chains up to N=34, and
finds a lower-energy fold for N=55. All the best folds have a
well developed hydrophobic core; the N=55 chain shown in
Fig. 7 is a good example. The latter fold was only obtained in
one run, and we are therefore far from claiming to have
found the ground state.

Low-energy folds in the flexible chain model for se-
quences containing adjacent H monomers are qualitatively

TABLE I. Results for the rotamer model. E0 is the target energy
of the difference map �DM� algorithm, Iav the average number of
iterations to find the target energy, and p0 the probability that the
discovered fold refines to the lowest energy obtained in the experi-
ment, EDM. The last column gives the CPU time per iteration on a
1.67 GHz processor.

N Sequence EDM E0 � Iav p0

Time/iteration
�ms�

24 �HPP�8 −25.048 −24.0 1.2 7500 0.50 12

30 �HPP�10 −34.900 −33.0 1.2 23000 0.07 18

36 �HPP�12 −45.851 −42.5 1.2 150000 26

FIG. 4. �Color� Chain constraint projection applied to a typical
monomer configuration �top� in the rotamer model. The projection
�bottom� minimally displaces monomers in order to satisfy bond
length and angle constraints.

FIG. 5. Evolution of the rms displacement of monomers, 
t,
between two configurations that satisfy the chain and packing con-
straints, respectively. The fold shown in Fig. 6 below was found in
just over 6000 iterations.

FIG. 6. �Color� The fold having the lowest energy for the se-
quence �HPP�8 in the rotamer model has the shape of a cut trefoil
knot. Hydrophobic monomers are colored green, polar monomers
are blue.
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different from the low-energy folds for Fibonacci sequences,
in which H monomers are never adjacent. A good example is
provided by the N=25 sequence H�HPPH�6, which was de-
signed to realize a particular ground state geometry. Using
the difference map it is easy to establish the ground state
shown in Fig. 8. This fold is unique in that it simultaneously
minimizes the bending energy where the chain passes
through the icosahedral core, and also arranges the six hair-
pin turns so that the P monomers there form the largest num-
ber of contacts.

IV. DISCUSSION

The difference map folding algorithm was shown to be
competitive with leading algorithms in experiments with

model proteins. We conclude by discussing the relationship
of this algorithm to global optimization methods that have
been applied to the folding problem, as well as two issues
that will be important in applications to realistic protein
models.

A. Relationship to global search

Algorithms that promise to find the true ground state of a
protein model are useful not just for finding the native fold,
but are essential in validating force field models of proteins
in a solvent environment. Even at a rudimentary level of
physical modeling, as in lattice-based HP models, global op-
timizers can shed light on the physical principles that lie at
the core of protein structure and sequence design.

One of the most successful global search schemes is the
constrained hydrophobic core construction �CHCC� method
of Yue and Dill �14� and further developed by Backofen and
Will �15�. This method has only been implemented on the
lattice, where it can now find ground states and compute
degeneracies for up to 200 HP residues. A weaker form of
the core constraint has been applied to conformational
searches of off-lattice models at the united atom level of
detail �16,17�.

TABLE II. Results for the flexible chain model. Ground state energy estimates obtained by the difference
map �DM� algorithm are compared with three other algorithms: pruned-enriched Rosenbluth method �PERM
�8��, multicanonical sampling �MUCA �9��, and energy landscape paving �ELP �9��. Optimal structures found
by ELP and DM for N=13, 21, and 34 Fibonacci sequences are essentially the same �12�. For N=55 the DM
finds a different, lower-energy fold. See Table I for definitions of DM parameters.

N Sequence EPERM EMUCA EELP EDM E0 � Iav p0

Time/iteration
�ms�

13 F6 −4.962 −4.967 −4.967 −4.975 −4.5 −1 34 0.34 3

21 F7 −11.524 −12.296 −12.316 −12.327 −11.8 −1 2900 0.024 25

34 F8 −21.568 −25.321 −25.476 −25.512 −23.5 −1 10000 0.007 80

55 F9 −32.884 −41.502 −42.428 −43.331 −38.0 −1 27000 200

25 H�HPPH�6 −28.313 −27.4 −1 9200 0.030 45

FIG. 7. �Color� Fold with lowest known energy for the N=55
Fibonacci sequence in the flexible chain model. Top, chain geom-
etry; Bottom, monomer packing.

FIG. 8. �Color� Ground state of the designed sequence
H�HPPH�6 in the flexible chain model. The 13 H monomers �green�
form the vertices and center of an almost perfect icosahedron. Apart
from the final bond in the structure, the chain geometry is approxi-
mately symmetric with respect to a twofold axis.
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The CHCC is similar to our constraint-based method in
that the tasks of forming a condensed core �packing con-
straint� and threading the sequence �chain constraint� are per-
formed separately. However, unlike the difference map
which performs these two tasks very much in tandem, the
CHCC gives higher priority to the packing problem and tack-
les this first using a “greedy” strategy. CHCC first finds op-
timal and near optimal hydrophobic cores by minimizing sur-
face area, the idea being that threading will probably succeed
with a core that is not too far from optimal.

The corresponding task in the difference map algorithm is
the projection to the packing constraint. The constraint set
for this projection, fixed by the target energy E0, is usually
far from the optimal monomer packing energy, apparently
because the chain constraint in the off-lattice setting plays a
more significant role. Whatever the actual origin, it appears
that the determination of the native fold is more equally
shared between these competing constraints in the models of
our study. Perhaps this can be interpreted even further, as a
mechanism responsible for the diversity of protein folds.
That is, one would expect a smaller diversity in shape if
optimal or near-optimal packings were able to accommodate
any sequence.

The difference map appears to work best when the two
constraint sets that define the solution are competitive, and
the computational workload is equally shared between the
two constraint projections. The algorithm’s chief drawback,
relative to global searches such as CHCC, is that the property
of being exhaustive rests on unproven ergodicity assump-
tions about the chaotic dynamics. However, this criticism
applies also to phase retrieval, where iterative, constraint-
based algorithms have no rivals.

B. Designed sequences

The performance of an iterative phase retrieval algorithm,
of which the difference map folding algorithm is a logical
descendent, is sensitively dependent on the degree to which
the input data is overdetermined �6�. We believe that the
latter attribute’s counterpart in protein folding is the property
of being well designed.

In the context of the geometry of the difference map, a
highly overdetermined problem corresponds to the situation
where the probability of nonempty intersection of the con-
straint sets A and B, given a specification by random data, is
exceedingly small. This makes the existence of a solution all
the more unusual. In phase retrieval one is guaranteed a so-

lution in even these unlikely circumstances, and moreover,
the uniqueness of the solution and efficiency of the solution
process relies on this fact.

Whether the simple protein models studied above have
the capacity for realizing highly overdetermined problem in-
stances �sequences� is open to speculation. With our choice
of deconstructing the energy landscape into chain and pack-
ing constraints, this would imply the existence of exception-
ally low-energy monomer packings that nevertheless can be
threaded by a particular sequence. Folds with these proper-
ties should be easier to find, because the target energy E0 of
the difference map algorithm could be set at a lower value
and thereby eliminate a large part of the energy landscape.
One experiment to test this hypothesis, in the flexible chain
model, would be to fold random sequences of 13 H and 12 P
monomers and compare performance, as well as ground state
energies, with the designed sequence H�HPPH�6.

C. More realistic models

A serious deficiency of the heteroploymer models studied
above is the omission of the hydrogen bonding mechanism
that acts on the peptide geometry and is responsible for the
two distinctive types of secondary structure. Another defi-
ciency is the neglect of side chain geometry and its effects on
packing. The computational overhead resulting from these
rather significant refinements would appear to present a
daunting challenge, given that the task of finding ground
states for the much simpler heteropolymer models seems in-
surmountable even for relatively short chains.

On the other hand, it may prove that the added level of
detail in a realistic protein model is essential in the construc-
tion of well-designed folders, that the exceptional character-
istics of evolved proteins cannot be realized without the ben-
efit of secondary structure elements and optimized side chain
packing. Since the difference map algorithm can directly ex-
ploit the designed �overdetermined� characteristics of an en-
ergy landscape, there is optimism that its success with real-
istic models may exceed, in terms of chain lengths, what can
be achieved with the heteropolymer models considered here.
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